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Abstract. We analyse the nonlinear supersymmetric model associated with the Polyakov
Euclidean σ -model. In this theory the main point is to be able to compute the partition and
correlation functions of interesting statistical variables. We briefly review some tools for renor-
malizing the partition function and we carry out the computations of the n-instanton contributions
for a toy model on S1; these are given explicitly in terms of specific hypergeometric functions.

1. Introduction

The main objective of this paper is to give a self-contained justification of the essential tools
used for the renormalization of the partition function and the explicit computation of the n-
instanton contribution to the partition function for a toy model on S1. This contribution is
given in terms of specific hypergeometric functions.

In relation to the general ideas and physical background we strongly recommend the
papers of Witten and Vafa at the ICM 1986 and 1998 respectively [1, 2].

In section 2 we review some concepts of statistical mechanical and the renormalization
tools needed. In section 3 we define the Dirac operator and the super-energy. In section 4 we
perform the calculation for our toy model and finally in section 5 we present our conclusions.

2. Notations and preliminaries

2.1. Basic statistical mechanics

In this section we review briefly the basic concepts of statistical mechanics [3], semiclassical
approximation, renormalization theory and supersymmetry [4] required for defining a nonlinear
supersymmetric model.

Definition 2.1. Let S be a set and E : S −→ R a function. The pair (S, E) will be called
a physical system. The elements of S are denominated configurations or states of the system
and E will be the energy function.

Definition 2.2. The partition function Z associated with the physical system (S, E) is given
by

Z =
∫

S
exp(−βE) dµ (1)

where β is related to the temperature T through the formula β−1 = kT and k is the Boltzmann
constant. µ denotes a positive measure over S.
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Definition 2.3. Let (S, E) be a physical system. A measurable real-valued function X on S
is called a physical observable and its mean value corresponds to

〈X〉 =
∫

S exp(−βE)X dµ

Z
. (2)

We will introduce the renormalization and semiclassical approximation techniques needed
to compute a finite value for the partition function Z.

The renormalization technique is related to an isometric action A of a Lie groupG on the
Riemannian manifold S. We denote by G the Riemannian metric on S and by h a bi-invariant
metric on G [5]. In [6] the renormalized partition function ZR is defined by

ZR = Z∫
G
νh

=
∫

S/G
exp(−βE)FP

1

vol(Ks)
νG . (3)

Here νh is the volume form of h, G is the metric induced in the orbit space by the metric
G of S and νG the volume form on S/G. Ks is the stabilizer of s and vol(Ks) denotes the
volume of Ks with the volume induced by h on any closed subgroup of G. FP denotes the
Faddeev–Popov determinant defined by

FP(s) =
√

detA′∗
s ◦ A′

s . (4)

Here A′
s is the derivative of g 	−→ s · g at the identity of G.

Another important tool that will help us to compute Z is the semiclassical approximation.
In fact, this corresponds to

ZSC =
∫

PC(E)
exp(−βE) 1√

det βHE
νG̃ (5)

where HE denotes the operator associated with the Hessian of E, restricted to the orthogonal
of the tangent space of PC(E), according to the metric induced by G (PC(E) is the set of
critical points ofE in S). G̃ denotes the restriction of the metric G to the sub-manifold PC(E).

3. The nonlinear supersymmetric model

In this section we will briefly discuss the nonlinear supersymmetric model for arbitrary source
� and target X. Supersymmetric means here, precisely, that we consider fermions ψ as
elements of a Grassmann fibre bundle over the Cartesian product of the space of all Riemannian
metrics g on the manifold � and over the space of all infinitely differentiable maps φ from
� to X. We are aware that supersymmetry is used when the tangent bundle of X admits
isometries for the given metric h that endow each tangent spaces with complex, quaternionic,
octonionic structure, but nevertheless we retain the same word because the inspiration for this
work originates from the aim of understanding supersymmetry. The first field g describes
gravitation in the Euclidean regime and the second φ bosonic states. In this paper we will not
discuss the representation of bosonic states as connections of a principal bundle over �.

We begin with two differentiable manifolds � and X. Let us denote by M = M(�) the
space of all Riemannian metrics on� and by C∞(�,X) the space of all infinitely differentiable
maps between them. We denote by B the Cartesian product of both spaces. The group of
preserving orientation diffeomorphism of � will be designated by D.

We proceed to describe the Grassmannian bundle over B.
Let us fix a Riemannian metric h onX. For a given pair (g, φ)we will introduce the Dirac

operator D(g,φ) as follows. First of all we will define a connection on the Clifford bundle Cg
over � from the metric g and on φ∗T (X) the pullback connection associated with h via the
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map φ. The desired connection on Cg ⊗ φ∗T (X) is obtained by tensoring both connections.
Let us denote by ∇ the connection so obtained for Cg ⊗ φ∗T (X), and Ei with index i running
from one up to the dimension of �, an orthonormal oriented frame for T (�).

Definition 3.1. The Dirac operator associated with the metric g and to the map φ is given by

D(g,φ) = �m
i=1E

i∇Ei . (6)

In the above formula m denotes the dimension of �.

Remark 3.2. The Dirac operator is a first-order formally self-adjoint differential operator;
its spectrum is real unbounded below and above. Its positive (negative) eigenvalues will be
denoted by λ+

i (λ−
i ) respectively.

We proceed now to describe the physical system. We denote by B the product space of
M(�) by C∞(�,X). Let us consider the bundle of Grassmann algebras over B: for each
(g, φ) the fibre over it will be the Grassmann algebra generated by one orthonormal basis of
eigensections of the corresponding Dirac operator. The space of states, S will be the disjoint
union of all the fibres described above: from now on it will be denoted by E . We need to
generalize the notion of the energy function given at the beginning in order to take into account
the fermionic nature of the elements of the fibre. In fact the super-energy Ê will be a section
of the bundle E ⊗ E∗ defined as follows:

Ê(ψ) = α

∫
s(g) νg + 1

2β

∫
Trg φ

∗hνg + γD(g,φ)ψ · ψ + δ
∫
φ∗B. (7)

We will briefly comment on each term of the sum above.
The first term, Eg , is the total energy associated with the gravitational field g. In fact,

s(g) coincides, for a four-dimensional�, with the energy density of the Lorentzian metric that
determines the light path in spacetime (the geodesics of the given g) [7]. On the mathematical
side, s(g) is the scalar curvature of g.

The second term, Eg

b , is the bosonic energy of the field φ coupled with the gravitational
field g. For a one-dimensional� this should be related to the kinetic energy of a point particle.

The third term, the fermionic energy, is given by the following explicit formal expression:

D(g,φ)ψ · ψ =
∑

λ+
i ψ

+
i · ψ+

i + λ−
i ψ

−
i · ψ−

i . (8)

The last term, Et , is the topological energy, which depends on the homotopy class of φ
and on the De Rham cohomology class of B.

The coupling constants α, β, γ and δ are introduced by dimensional reasons and also in
order to reflect the force of the interactions between the different fields of the model.

We will define the partition function associated with the super-energy Ê by the following
expression:

ZSC
R =

∫
M/D

exp(−αEg)
[ ∫

PC(Egb )
exp(−δEt) exp(−βEg

b )
det(γD(g,φ))√

det βHE
νG̃

]
FP(g)

vol(Kg)
νG . (9)

In order to restore the important physical constants kT in formula (9) and in what follows,
it is sufficient to substitute each coupling constant simultaneously, let us say α by α

kT
etc.

4. Partition function for a model on S1

In this section we will compute the n-instanton contribution to the partition function for a
system of gravitational fields, bosons and fermions on � = S1. We also choose X as a
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circumference of radius one with h the unique bi-invariant metric that gives unit length to S1.
We hope, in the future, to use our procedure for a compact Lie group G [5].

Let E and F be units vector fields on � = X for the metrics g and h, respectively; we
will denote by F̃ the induced unitary section on φ∗(T X). We also denote by a and b infinitely
differentiable functions on S1: in this case we obtain

D(g,φ)(a 1 ⊗ F̃ + b E∗ ⊗ F̃ ) = −E(b)1 ⊗ F̃ + E(a)E∗ ⊗ F̃ . (10)

In order to compute the determinant of the Dirac operator above, first we consider the case
in which g is the usual metric u on the unit circumference. In this case the eigenvalues are
the integers, each of them with multiplicity two. Next we consider g = λu: the multiplicities
for the associated Dirac operators remain equal to two, but the eigenvalues are multiplied by
the square root of λ. The general case is reduced to that just considered by observing that,
for an arbitrary metric g on the unit circumference, we can find an orientation preserving
diffeomorphism f such that the pullback of g by f is of the form studied with λ = lg

2π : here lg
denotes the length of the unit circumference with the metric g. In all these cases the η-invariant
associated with the computations of the determinant of D(g,φ) is equal to unity [8]. After some
computation using the ζ regularization procedure [9], and by regularizing the infinite sum of
the sgn(λ), for the negative eigenvalues λ we obtain

det(γD(g,φ)) = −l2gγ−2. (11)

Using the same procedure as above we obtain

det(βHE) = l2gβ
−1. (12)

The variety of critical points stratifies according to the degree of the map φ. In degree
zero we obtain just the constant maps: this is the main contribution to the partition function.
After identifying them with X, the metric induced on X by the supermetric G becomes lgh.
The same happens with the n-instanton φ, these are identified with X through the map φ goes
to φ(1).

We take into consideration, the following fact concerning integration over the orbit space
of M under the action of the diffeomorphism group. (See in particular section 2 (pp 5295–6)
and section 3 (pp 5297–8) of [6].)∫

M/D
F(g)

FP(g)

vol(Kg)
νG =

∫ ∞

0
F(x)

x

2
x−3/2 2√

x
dx. (13)

In the above expression G is the metric on the quotient space induced by imposing that the
canonical projection is an isometry. The x

2 originates from the Faddeev–Popov determinant;
the x−3/2 factor reflects the volume of the isometry group associated with a given metric g,
with the volume originating from the metric induced on the diffeomorphism group of S1 by
g. The last factor in the above integral, 2√

x
dx, corresponds under the natural identification

g 	→ lg to the volume induced on the orbit space by G.
Finally after integration on the orbit space we obtain

−[ZSC
R ]0 = γ−2β1/2α−3/4 1

2 +(
3
4 ). (14)

We proceed now to compute the contribution of the degree-n instanton, corresponding to
maps φ that are critical points of Eg

b . These are characterized by the equation

φ∗E = n

lg
F̃ . (15)

The bosonic energy is given by Eg

b (φ) = n2

2lg
and the topological energy Et is precisely n.
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After some substitutions in (9) we obtain for the n-instanton contribution

−[ZSC
R ]n = qn γ−2β1/2α−3/4

∫ ∞

0
exp

(
−x2 − bn2

2x

)
x1/2 dx. (16)

In formula (16) q = exp(−δc) and b = β
√
α. In this case (see (7)) we choose B = cvh;

note that vh is the integer generator of H 1
DR(X).

The integral I (b, n) in formula (16) can be calculated using Maple and gives an
expression involving hypergeometric functions, here denoted by F (see (18) below). Note
that I (b, n) = I (b,−n) and qn + q−n = 2ch(nδc); with the above notations we can write at
least formally our final formula for

−ZSC
R = γ−2β1/2α−3/4

[
I (b, 0) +

∞∑
1

I (b, n)2ch(nδc)

]
(17)

with

I (b, n) = −1

2
+

(
3

4

)
F

(
[ ],

[
1

2
,

1

4

]
,−p2

)
+
πp

√
2

+( 3
4 )
F

(
[ ],

[
3

2
,

3

4

]
,−p2

)

− 8
3

√
2πp3F([ ], [ 5

4 ,
7
4 ],−p2) (18)

where 4p = bn2.

5. Conclusions

We have outlined the main ingredients for building a supersymmetric nonlinear model and
we have shown explicitly that they are sufficient to obtain a finite answer for the partition
function of our toy model. We have not imposed geometric conditions on either � or X; in
the first manifolds it is convenient to impose a spin structure and on the second we require
the existence of complex or quaternionic structures compatible with the given metric h on X.
This and related topics are discussed in [4, 10, 11].

With dimensions greater than two we need to impose additional restrictions in order to
successfully compute the renormalized partition function. For instance in dimension two, for
a compact oriented manifold of genus greater than unity without boundary we consider only
metrics of constant curvature equal to −1. The next step is to compute correlation functions
and to relate these computations to physical or geometrical problems as in [10]. We have
computed the instanton corrections for all degrees; we have obtained explicit expressions
involving hypergeometric functions but we do not know if the series obtained is convergent.
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